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 Abstract 

 The present article discusses the changing attitudes of mathematicians 
towards intensive computations with particular cases as part of the 
discipline of number theory from the second half of the nineteenth century 
on. It focuses on the cases of Mersenne primes and irregular primes and 
discusses factors that shaped these attitudes in various historical contexts. It 
describes, in particular, the work of Emma and DH Lehmer and the unique 
approach they followed in their number theoretical investigations. This 
approach helped them take a leading role in the early incursion of digital 
computers into number theory. This incursion is described against the 
background of institutional, ideological and technological aspects of the 
development of the discipline of number theory in the USA in the period 
considered. Their cooperation in 1952 with Raphael Robinson in calculating 
new cases of Mersenne primes with SWAC at UCLA is discussed in some 
detail. 
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1. Introduction 

Frank Nelson Cole (1861-1921) was among the prominent American mathematicians of 

his generation. He was long time secretary of the American Mathematical Society and 

editor-in-chief of its Bulletin. He was institutionally immortalized in the late 1920s as two 

important AMS prizes bearing his name were established, in number theory and in 

algebra respectively. Cole is also remembered for a legendary achievement that Eric 

Temple Bell (1883-1960) recounted in his Mathematics; Queen and Servant of Sciences 

as follows [Bell 1951, 228]: 

At the October, 1903, meeting in New York of the American Mathematical Society, Cole had a 

paper on the program with the modest title On the factorization of large numbers. When the 

chairman called on him for his paper, Cole—who was always a man of few words—walked to 

the board and, saying nothing, proceeded to chalk up the arithmetic for raising 2 to the sixty-

seventh power. Then he carefully subtracted 1. Without a word, he moved over to a clear space 

on the board and multiplied out, by longhand,  

193,707,721  761,838,257,287. 

The two calculations agreed. … For the first and only time in record, an audience of the 

American Mathematical Society vigorously applauded the author of a paper delivered before it. 

Cole took his seat without having uttered a word. Nobody asked him a question.  

The number 267 – 1 is, of course, the Mersenne number M67, and Cole’s achievement 

represented a veritable tour de force of patience and computational skills. Bell intended 

above all to preserve “a small bit of history before all the American mathematicians of 

the first half of the twentieth century are gone.” When he had asked Cole in 1911, he 

wrote, how long it had taken to crack M67, Cole reportedly answered: “three years of 

Sundays.”  
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Historians of mathematics tend to distrust the historical reliability of most of Bell’s 

accounts, and in this case there are good reasons to stick to this habitude. For one thing, 

the Bulletin of the American Mathematical Society records the talks presented at its 

meeting of December 31, 1903, in New York, including Cole’s, precisely with the name 

mentioned by Bell. The text is much more elaborate than simply two arithmetic 

operations whose results are equated, and it contains some interesting ideas about the 

importance of the result and about how Cole went about finding the factors involved in 

his calculation (more on this below). One may certainly agree that Cole deserved the 

standing ovation, and indeed the ovation may have actually taken place. None of this, 

however, is mentioned in the Bulletin. As for the amount of time spent on the calculation, 

there seems to be no other source of information about this than Bell. His account, at any 

rate, became an accepted mathematical urban legend that has been repeated over and over 

again, often extending the three years of Bell to “twenty years of Sunday afternoons.”1 

One way or another, the result is admirable and one may be sure that it was achieved only 

after much computational effort.  

Almost hundred years later, another remarkable factorization of large integers took place, 

this one involving much bigger numbers. In 1997 a team of computer scientists led by 

Samuel Wagstaff at Purdue, factorized a 167-digit number, (3349 -1)/2, into two factors of 

eighty and eighty-seven digits respectively.  

According to Wagstaff’s report, the result required about 100,000 computer hours. 

Wagstaff had previously been involved in many other remarkable computations. For 

                                                 
1 A recent example appears in [Ruskeepää 1998, 1].  
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instance, in 1978 he used a digital computer to prove that Fermat’s last theorem (FLT) is 

valid for prime exponents up to 125,000. This required computing values of Bernoulli 

numbers in order to identify new instances of irregular primes (more on this below). His 

methods were further developed over the following decades and, combined with new 

algorithms and symbolic computation techniques, they continue to be applied for very 

intensive calculations that have showed, e.g., that FLT is valid for prime exponents up to 

12,000,000 (Buhler et al 2001).  

 

Factorization results such as Cole’s and Wagstaff’s will at the very least elicit a smile of 

approval on the side of anyone with a minimum of sympathy and appreciation for 

remarkable mathematical results. But when faced with the price tag (in terms of time 

spent to achieve it), the same sympathetic listener (and by all means the cynical one) will 

immediately raise the question whether all this awful lot of time was worth spending. 

Investing valuable resources in the search for ever higher values of exponents for which 

FLT is valid may appear to be an especially awkward pursuit after 1994, the year when 

Andrew Wiles gave a general proof that FLT is valid for any exponent. As a matter of 

fact, it is plausible that critical attitudes towards the value of these kinds of mathematical 

pursuits may come (or came), in the first place, from pure mathematicians and even from 

leading number theorists. Indeed, if we look at the opinions of some of the most 

prominent number theorists at the turn of the twentieth century, we may find clear 

evidence pointing to this direction. A very famous instance of this appears in a passage 

from the introduction of a well-known book of David Hilbert (1862-1943). The 

Zahlbericht (“Report on numbers”) was one of the most influential texts in the discipline 
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for decades after its publication in 1897. Referring to the recent development of the 

theory of algebraic number fields, starting with ideas of Ernst Edward Kummer (1810-

1893) and then moving to the hands of Richard Dedekind (1831-1916) and Leopold 

Kronecker (1823-1891), Hilbert said [Hilbert 1998, ix]:  

It is clear that the theory of these Kummer fields represents the highest peak reached on the 

mountain of today’s knowledge of arithmetic; from it we look out on the wide panorama of the 

whole explored domain since almost all essential ideas and concepts of field theory, at least in a 

special setting, find an application in the proof of the higher reciprocity laws. I have tried to avoid 

Kummer’s elaborate computational machinery, so that here ... proof can be completed not by 

calculations but purely by ideas.  

Hermann Minkowski (1864-1909) – who was Hilbert’s close friend and collaborator and 

no less prominent number-theorist than him – systematically promoted a similar 

perspective in his work. He spoke of “the other Dirichlet principle”, embodying the view 

that in mathematics “problems should be solved through a minimum of blind 

computations and through a maximum of forethought” [Minkowski 1905].  

One may assume that both Hilbert and Minkowski could be counted among those who 

would approve with a smile when faced with Cole’s result, but at the same time one can 

hardly think of either them as devoting so much of their own time (or the time of their 

students) to a task of that kind, and much less to a mathematical task of the kind 

undertook by Wagstaff or any of his followers. So, a general historical question arises 

here concerning the conditions and circumstances under which time-consuming, 

computational tasks are deemed by mathematicians of being worth their time, efforts, and 

resources. It is obvious that in a discipline like number theory there is always an ongoing 

interplay between calculations with specific cases, on the one hand, and the formulation 
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of powerful theories that should provide general theorems, algorithms and results, on the 

other hand. Still, there is a question of balance between these two aspects of 

mathematical activity, and the factors that affect this balance throughout history. It is this 

question that occupies the main focus of the present article.  

In the case of the examples mentioned above, one can immediately notice the different 

mathematical circumstances in which these tasks involving in their own ways intensive 

calculations might be justified. Sheer scientific curiosity was of course a main motivation 

behind both Cole’s and Wagstaff’s calculations, but Wagstaff’s quest could also be 

justified by external factors that did not apply back at Cole’s time. Such factors are 

explicitly stated in a press release published by Purdue University following the 

announcement of Wagstaff’s factorization result, under the title: “Number crunchers zero 

in on record-large number”.2 Wagstaff cared to stress for the press the importance of 

knowing the limits of our abilities to perform such large factorization while arguing that 

the latter are “essential to developing secure codes and ciphers.” Cole did not have to 

provide any kind of justification for the resources spent on reaching his result (i.e., his 

time), and not only because they were significantly cheaper than those involved in 

Wagstaff’s result. If called to do so, he could not have put forward an argument similar to 

Wagstaff’s. General perceptions about the need, and the appropriate ways for public 

scrutiny of science, its tasks and its funding, changed very much in the period of time 

between 1903 and 1997, and this in itself would be enough to elicit different kinds of 

reactions to both undertakings. But above all, it was the rise of e-commerce and the need 

for secure encryption techniques for the Internet that brought about a deep revolution in 
                                                 
2 See http://homes.cerias.purdue.edu/~ssw/Wnumber.html.  
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the self-definition of the discipline of number theory in the eyes of many of its 

practitioners, and in the ways it could be presented to the public. Whereas in the past, this 

was a discipline that prided itself above all for its detachment from any real application to 

the affairs of the mundane world, over the last three decades it turned into the showpiece 

of mathematics as applied to the brave new world of cyberspace security. The application 

of public-key encryption techniques, such as those based on the RSA cryptosystem, 

turned the entire field of factorization techniques and primality testing, from an arcane, 

highly esoteric, purely mathematical pursuit into a most coveted area of intense 

investigation with immediate practical applications, and expected to yield enormous 

economic gains to the experts in the field.  

Cole, as far as we know, provided no explicit justification for the many hours spent on his 

pursuit. He was, after all, a man of few words (at least according to Bell). Probably he felt 

no need to provide such a justification to begin with. But another mathematician who was 

directly involved in factorizations similar to Cole’s in the pre-RSA era of number theory 

did state clearly his views on these matters, and it is pertinent to quote him here. This is 

Derrick Henry (Dick) Lehmer (1905-1991) about whom I will say more below. He 

developed a life- long interest in computing devices, especially as applied to number 

theory. One of the various machines he was involved with was a photoelectric sieve he 

built in 1932 for factorizing integers and identifying prime numbers. He used it 

successfully to find the factors of M93 in several minutes work of the “rapidly rotating 

wheels” of the sieve, this time being spent in trying out a certain formula on ten million 

candidate numbers. Lehmer compared this short and accurate calculation to that of a man 

entrusted with performing the same task: each separate trial would take a man at least six 
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minutes; assuming that the man would work ten hours a day it would take him a hundred 

thousand years, i.e., three hundred years “if he did not get stale”. 

Technologically speaking, Lehmer was closer to Wagstaff than to Cole, but his 

justification discourse was of a completely different kind, presumably adequate for Cole 

as well. It may come as a surprise to many, he said, “that the most compelling urge to the 

study of mathematics is not its practical application to the study of every day, bread-and-

butter life, but lies in the romance and glamour surrounding its mysterious secrets.” 

Moreover, he thought, it will come as a shock to some, when they are told that there is 

absolutely no practical application to this “astonishing machine upon which so much 

thought and care has been expended.” He certainly did not see himself as looking for any 

application, and he was strongly opinionated about it [Lehmer 1932, 235]: 

There is a cowardly and sinking sort of a scientist, no doubt, who is ashamed or afraid to take a 

walk in the country with the avowed purpose of enjoying the landscape. He must provide himself 

with a fishing rod or a collecting basket of some sort, so that if one asks him why he is aborad he 

will be able to point to some “practical application” for his stroll in the hills. He is, no doubt, 

merely trying to avoid the odium that seems to have attached itself to the poet or to the musician 

who is hard put to it to procuce a health, bread-and-butter reason for making a sonnet or a 

symphony. To listen to the apologists for the study of pure mathematics one would get the 

impression that this study is sustained, not by the Wonder or Beauty of the subject, but by its 

external utilities. But how little of the vast field of mathematics has to do with the study of the 

outside world!  

Many mathematicians expressed similar opinions before or after Lehmer, the most noted 

of whom was Hardy in his famous A Mathematician’s Apology [Hardy 1940]. Here it has 

a special flavor because of later developments as embodied in works such as Wagstaff’s 
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and the discourse that developed around them. And, in addition, Lehmer ended his text by 

sounding a prophetic note that enhances the main thrust of his opinions. He thus wrote:  

The subtle and expensive determinations of the bending of a ray of light by a gravitational field, 

or the careful listing of the binary starts in the heavens, can have little application to the making 

of two squares where only one grew before. Faraday, playing with wires in his laboratory, wrests 

from the hands of nature a torch that Edison uses to light the world, and Einstein to light the 

universe. Who can tell? Perhaps in some far distant century they may say, “Strange that those 

ingenious investigations into the secrets of the number system had so little conception of the 

fundamental discoveries that would later develop from them!” 

Lehmer passed away precisely at the time when it was becoming clear that the only 

miscalculation involved in a statement like his was that it would be enough to wait 

several decades, rather than centuries.  

The deep change in the status of time-consuming computational tasks from Cole to 

Wagstaff, via Lehmer, provides an extreme, most visible example of the more general 

topic of this article, namely, the changing attitudes of mathematicians towards intensive 

computations with particular cases as part of the discipline of number theory from the 

second half of the nineteenth century on. By focusing on the cases of Mersenne primes 

and irregular primes I will discuss some of the factors that shaped these attitudes in 

various historical contexts. Section 2 contains an account of the early history of Mersenne 

primes up to Cole. It provides an overview of the works of mathematicians involved in 

calculating such numbers and of their scopes of interests, as well as of their main 

methodological guidelines. Section 3 focuses on work on irregular primes done by 

Kummer. In spite of their apparent conceptual proximity, these two fields of research in 

number theory, Mersenne numbers and irregular primes, developed in completely 
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different ways. This is particularly the case when it comes to the question of massive 

computations performed in relation with each of them. Section 4 provides a comparative 

overview of the stories of these two kinds of calculations and in doing so, it directs the 

focus of attention to the topics to be discussed in the following sections. Section 5 

describes the early work of the Lehmers and the unique approach they followed in their 

number theoretical investigations, making them ideal candidates to taking a leading role 

in the early incursion of digital computers into number theory. This incursion is described 

in section 7, after having discussed in section 6 some institutional, ideological and 

technological aspects of the development of the discipline of number theory in the USA 

in the period considered, and the main changes that affected it. This discussion provides a 

broad historical context for understanding the work of the Lehmers and its idiosyncratic 

character within the discipline. Their unique professional and institutional position 

facilitated a process that could otherwise have taken much longer to materialize, whereby 

massive calculations with digital computers were incorporated into number theory, first at 

the margins and gradually into its mainstream. 

 

2. Mersenne Primes  

Cole’s computation of the factors of M67 is at the peak of a fascinating mathematical story 

that can be traced back to the Pythagoreans’ interest in perfect numbers.3 These are 

                                                 
3 In this section I have relied on information provided by three main sources: [Dickson 

1920, Vol. 1], [Décaillot 1998], [Williams 1998]. 
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integers n, such as 6 and 28, satisfying the property that n equals the sum of their proper 

factors (i.e., not including n itself). The arithmetical books of Euclid’s Elements 

culminate with Proposition 36 of Book IX, which (in modern terms) states that: 

(E)  numbers of the form 2n-1(2n – 1) are perfect whenever (2n – 1) is prime 

for some n.  

Nicomachus of Gerasa (@ 60 -120, AD), who discussed Eratosthenes’ sieve method for 

determining primeness and was aware that 31 and 127 were prime, established that 6, 28, 

496, 8128 are perfect numbers ( i.e., when in the above formula we use n = 2, 3, 5, 7). 

Nicomachus advanced many additional claims about the perfect numbers, such as, for 

example, that they all end alternately in digits 6 and 8, or that the nth perfect number has 

n digits. Nicomachus and many others after him also assumed that all perfect numbers are 

even and that, indeed, the perfect numbers yield by Euclid’s criterion (E) are all the 

perfect numbers that exist.  

Many of these claims turned out to be wrong, and some were later proved to be correct. 

From the point of view of our account here it is important to stress, above all, that even at 

this early stage of the history of number theory we see two completely different kinds of 

emphasis embodied in the respective approaches of Euclid and Nicomachus to the same 

question: the former formulated the general principle and proved the general theorem, 

whereas the latter set out to look for specific instances of perfect numbers by calculating 

with particular cases. This quest for individual instances in the hands of a Pythagorean 

like Nichomacus finds a clear explanation in his more mystical than purely mathematical 

motivations. Euclid’s general formulation and proof of the criterion pertaining to the 
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perfect numbers, on the other hand, is in line with the overall spirit of his mathematics, as 

embodied in the Elements.  

Although after Nicomachus we find discussions about perfect numbers in various 

sources, especially in the Islamic world, further instances of perfect numbers were 

discovered only much later, in fifteenth-century Europe. A main figure in this 

development was Pietro Cataldi (1552-1626) who by 1603 was aware of the primality of 

213 – 1, 217 – 1, and 219 – 1 (but was not the first to add numbers to the list of four 

numbers known in antiquity). More importantly, he was the first to realize that if 2n – 1 is 

prime, then n has to be prime.  

The study of what we call now Mersenne primes started as part of this same thread of 

ideas. Marin Mersenne (1588 – 1648) was a French Minim friar who became known in 

the history of mathematics for his role as a clearing house for correspondence between 

eminent philosophers and scientists – such as Descartes, Pascal and Fermat – as well as 

for his own enthusiastic interest in questions related with number theory. Like various 

others with a similar interest before him, Mersenne approached the question of the perfect 

numbers and of the primality of the factors 2n – 1. In a text published in 1644 Mersenne 

came up with the surprising statement that from the fifty-five primes in the range n ≤ 257, 

the perfect numbers of the form 2n-1(2n – 1) are only those that obtain for n = 2, 3, 5, 7, 

13, 17, 19, 31, 67, 127, 257. Mersenne was perfectly aware of the enormous difficulty 

involved in testing the primality of large numbers of 15 to 20 digits that appear in this 

context, and it is obvious that he did not actually check all the factors 2n – 1 for the cases 

appearing in his list. It is thus all the more curious that he was so certain about his guess 

as expressed in that statement. By looking at a different text of Mersenne, historian 
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Stillman Drake [Drake 1971] was able to determine the rule by which he apparently 

produced the list:  

(M1)  the values of n for which 2n – 1 is prime are either of the form n = 2k ± 1 or 

of the form n = 22k ± 3.  

Mersenne’s list, however, is incorrect. The values n = 67, 257 do not yield primes as he 

claimed, whereas the values n = 61, 89, 107 do yield primes but they are missing in the 

list. Nonetheless the list is an amazing achievement not just because of the many insights 

it involves and the calculational effort involved in producing it, but also because the very 

long time that passed before its mistakes were first spotted. Indeed, the first mistake to be 

identified was that 61 should be in the list even by Mersenne’s own rule. This fact was 

not discovered before 1883. The mistake was sometimes explained as being merely a 

typographical one in Mersenne’s original text [Bateman et al 1989]. 

Mersenne’s interest in these kinds of question was a main topic of discussion in his 

correspondence in general, and particularly so with Fermat. In his letters to Mersenne, as 

was his habitude, Fermat raised many interesting ideas, mentioned many general results 

proved along the way (but usually without revealing his proof) and proposed new 

problems to be solved. Using some of the general results he had proved, Fermat also 

addressed questions related with particular cases of Mersenne numbers. In a letter of 

1638 he formulated in a precise way, for the first time, the statement that all even perfect 

numbers are such that satisfy Euclid’s condition (E). In a different letter, to Frans van 

Schooten (1615-1660) in 1958, he proposed the challenge of proving or disproving this 

assertion. He also showed, for example, that 23 was a factor of M11 and that 47 a factor of 

M23.  
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Among other original ideas mentioned by Fermat in his letters dealing with the Mersenne 

numbers, a famous one he discussed concerned the question of the possible divisors of 

numbers 2m + 1. In this context he advanced the claim that numbers of the form Fm = 

122 +
n

 are always prime. Such numbers Fm are called Fermat numbers. Interestingly, in a 

letter sent in 1659 to another of his correspondents, Pierre de Carcavi (1600-1684), but 

actually intended for Christian Huygens (1629-1695), Fermat suggested that he had a 

proof of this conjecture based on the “method of infinite descent” [Fermat Oeuvres, Vol. 

2, 431-436]. Eventually, however, in 1732 Leonhard Euler (1707-1783) famously showed 

that F5 is not a prime. 

A series of prominent mathematicians of the following generations undertook to solve 

problems associated with Fermat’s legacy in number theory, a field of mathematical 

interest that was called then, simply, higher arithmetic. The most distinguished of these 

included Euler, Joseph Louis Lagrange (1736–1813), Adrién Marie Legendre (1752-

1833) and Carl Friedrich Gauss (1777-1855). Among many other things, Euler proved a 

series of results that allowed him to identify, in many cases, factors of Mersenne 

numbers. These same results stood behind his proof that F5 is not prime. At the same 

time, he also proved that M31 is prime, which remained the largest known prime until 

1851. A posthumous paper by Euler contains the first proof that Euclid’s condition (E) 

does give all possible even perfect numbers [Sandifer 2006]. This result also implies that 
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all even perfect numbers end in either a 6 or 8, but not alternately as stated by 

Nichomacus.4 

Legendre further developed some of the new methods introduced by Euler to the 

discipline and used them to find factors of numbers that were quite large at the time, such 

as 10,091,401. The factorization techniques he introduced had long lasting influence and 

they deserve a brief discussion here. Legendre relied on the concept of quadratic residue: 

a is called a quadratic residue of p if there exists integers x that satisfy the congruence    

x2 ≡ a (mod p). Otherwise, a is a quadratic nonresidue of p. It is easy to see that if p is an 

odd prime, then there are exactly (p – 1)/2 quadratic residues mod p, and (p – 1)/2 

nonresidues. Legendre introduced a useful notation (a/p), the Legendre symbol, to 

indicate that a is a quadratic residue mod p (in which case (a/p) = 1) or a nonresidue (in 

which case (a/p) = -1). Now, let us assume that for a integer N we can write  

 kN = x2 – ry2,  (*) 

for some values of k and r. It can be seen that in such cases, if a prime p divides N, then 

(r/p) = 1. Using some additional, elementary properties of the quadratic residues, this 

property allows determining forms of primes p that are possible candidates for factors of 

N. The more representations of N in linear forms of the type (*) that are available, the 

further the restriction on the prime numbers p, p < √N, that are possible candidates for 

being factors of N. Tables of linear forms for representing any number N as in (*) can be 

                                                 
4 As for odd perfect numbers, it not yet known if any such exists, but none has been 

found for values up to 10300. See [Brent et al. 1991; Guy 1994, 44-45].  
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prepared in advance and these provide an extremely useful tool for factorization 

processes. 

Both Legendre and Gauss wrote very influential textbooks that summarized the state of 

the art in the discipline and that shaped much of its subsequent development. More than 

Legendre’s treatise [Legendre 1798], it was Gauss’s monumental Disquisitiones 

Arithmeticae of 1801 that represented the first great codification and systematization of 

number theory at the beginning of nineteenth century. It presented for the first time in a 

truly systematic fashion a great amount of results that were theretofore seen (even in 

Legendre’s first edition) as a somewhat haphazard collection of separate problems and 

diverse techniques. It had a momentous influence over what the discipline of number 

theory would become over the nineteenth century and beyond, but this influence acted in 

many, diverging ways [Goldstein & Schappacher 2007a]. Intensive calculations with 

individual cases were devoted only little attention in Legendre’s book and not at all in 

Gauss’s. Subsequent developments on activity related to Mersenne numbers and their 

possible factors has to be seen against the background of the processes unleashed in 

number theory by the publication of Disquisitiones Arithmeticae, and by the ways in 

which these processes left only little room for intensive computations as a main task in 

the discipline (more on this below).  

And indeed, the person who appears next in our story, as the main contributor in the last 

third of the nineteenth century to calculations related with Mersenne numbers was not at 

the mainstream of academic mathematics of his time. He is Édouard Lucas (1842-1891), 

whose name continues to be associated to this day with the algorithm for testing the 

primality of Mersenne numbers, about which more is said below. It was only relatively 



Corry - Primes 

 - 17 - 

recently, however, that more focused attention was devoted to his research as an object of 

historical interest, as we see in the illuminating accounts of Hugh Williams [1998] and, 

from a somewhat different perspective, of Anne-Marie Décaillot [1998, 2002].  

After graduating from the École normale supérieure Édouard Lucas worked at the Paris 

observatory, as assistant to Urbain Le Verrier (1811-1887), best known for the 

calculations that led to the discovery of Neptune. Then he was artillery officer at the 

Franco-Prussian war of 1870-71, where he distinguished himself in the battlefield. After 

the war Lucas worked in various French lyceés, first in Moulins and then in Paris. Lucas’ 

interests covered various fields of mathematics such as astronomy, geometry, 

combinatorics and, above all, number theory. He published dozens of articles on these 

topics, which were mainly short research notes generally appearing in relatively minor 

journals. Much of his mathematical activities were associated with the Association 

française pour l’advancement des sciences (AFAS), established in 1872 as a way to 

contribute to the moral recovery of their country after the war. Lucas also published a 

textbook on the theory of numbers [Lucas 1891] (a rarity in French mathematics at the 

time) and a four-volume book that became a classic: Récréations mathématiques. Among 

other things, Lucas is well known for the invention of the Tower of Hanoi puzzle 

[Williams 1998, 57- 65]. 

His important contributions to questions of factorization and primality testing were 

developed during a relatively short time he devoted to investigating this field of 

arithmetic, 1875 to 1880. Curiously, among the original motivations that led Lucas to his 

interest in number theory and particularly on prime numbers, questions related to 

industrial fabrics are prominent. He found interesting ways to apply Gauss’s theory of 
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congruences to the construction and classification of fabrics with a rectilinear weaving, 

by representing the latter as drawings on cross-ruled paper. In fact, Lucas even 

formulated a new proof of the reciprocity theorem using weaving-related concepts [Lucas 

1890]. Lucas took direct inspiration from Fermat’s works and, among other things he 

became interested in what is nowadays called pseudo-primes, i.e., integers that satisfy 

sufficient criteria of primality but are not themselves prime. For Lucas, the most 

important such criterion was the one deriving from the so-called Fermat’s little theorem, 

which states that if p is a prime number, then for any number a not divisible by p one has 

ap ≡ a (mod p). Lucas used a variant formulation of Gauss, which states that: 

(G)  If p is a prime number which does not divide a and if at is the smallest 

power of a for which at ≡ 1 (mod p), then t divides p -1.  

Lucas was aware of the fact that the converse of this theorem is not generally valid, as he 

showed in the following example: 237·73-1 ≡ 1 (mod 37·73). He then also formulated in 

1876 a kind of converse for Fermat’s theorem, namely: 

 (Lu1)  If a and p are relatively prime, and if ax – 1 is divisible by p when x = p-1 

and is not divisible by p when x is any divisor of p-1 other than p-1, then the 

number p is prime.  

Lucas investigated the primality of large numbers by looking at the sequence of 

Fibonacci numbers, for which he proved several results. Let un be the nth number in the 

sequence of Fibonacci numbers, and d divides un; then d is called a proper divisor of un if 

d does not divide ur, for any r such that 1 < r < n. From the table of Fibonacci numbers 

and its divisors Lucas discovered the following two properties: 
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(Lu2)  If n ≡ ±3 (mod 10) and n is a proper divisor of un+1, then n is prime.  

(Lu3)  If n ≡ ±1 (mod 10) and n is a proper divisor of un-1, then n is prime.  

He presented various successive proofs of this, each of which turned out to be mistaken 

in its own way. The result was correctly proved only in 1913 by Robert Daniel 

Carmichael (1879–1967). At any rate, when Lucas first published it in 1876, he added a 

very significant comment, namely that a result like this allows determining if a number is 

prime or composite, “without making use of a table of prime numbers”, and indeed, 

without having to perform a large number of trial divisions. In particular, he thought to 

have proved in this way the primality of M127 = 2127 – 1, a number of the form 10p – 3. In 

order to do so, he said, he had verified that uk is never divisible by numbers A = 2n, except 

for n = 127.  

For reasons of space, the details of Lucas interesting calculations cannot be given here. 

Still, for the purposes of the present account, it is necessary to mention some of the main 

ideas related with it. Let vn be defined as vn = u2n/un. Lucas proved another, related result 

as follows: 

(Lu4)  Let p be an odd prime and suppose nvp
2

| ; then p ≡ ±1 (mod 2n+1).  

It follows from here that in order to show that M127 is prime, it suffices to show that 

1262127 | vM . Notice again: the primality of M127 is determined, not by checking whether or 

not this number is divided by certain factors, but rather by checking whether or not the 

number itself divides another, specified number (which itself is typically very large). This 

is the core of Lucas innovation. It reduces enormously the amounts of operations to be 
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performed for testing an individual number, but not the complexity (and length) of the 

specific computations involved in that case. 

If we write now kvrk 2
= , what Lucas had to show is that r126 ≡ 0 (mod M127). Now, M127 

is a 39-digit number. Lucas needed to perform about 120 squaring operations and about 

120 divisions involving numbers of that size. To help performing this exacting task he 

devised an original approach based on the use of a 127 × 127 chessboard. This approach 

significantly embodies a combination of Lucas’ interest and motivations: a game-like 

spirit, his previous experience with mathematical analysis of industrial fabrics, and also 

his knowledge of Sylvester’s anallagmatic chess-board, which Lucas had used previously 

to decompose numbers which are sums of squares [Décaillot 2002]. Lucas represented on 

the board the numbers investigated, for instance r126 × r126 (mod 2127), by using a binary 

notation in which a pawn in a square stands for 1, while an empty one stands for 0. The 

convenience of using this method in the context of Mersenne numbers derives from the 

fact that in their binary representation, they appear as strings of only 1’s. To this binary 

representation Lucas applied an algorithm that reduces the arithmetic operations on the 

numbers to removal or addition of pawns and gradual reduction of lines on the 

chessboard, until only the upper row still contains pawns. Working in this way he 

performed the test for M127 in a time that is estimated between 170 and 300 hours. The 

last step in his algorithm indicated a result, according to the status of the pawns in the 

remaining line on the chessboard: M127 is prime. But Lucas had no permanent record of 

the many partial results on the way to this conclusion. Thus, even though he could trust 

his method in principle, and even though he had trained himself previously with lower 

values of n, to gain experience with the method, he could not be completely sure not to 
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have made any mistake in an intermediate step of his long procedure. He performed the 

entire computation only once, and hence his somewhat hesitant conclusion that “he 

thought to have proved” the result. 

It should be noticed that Lucas’s main focus of attention when developing these methods 

was the properties of primes in general and primality testing in particular, rather than, 

more specifically, Mersenne numbers as such. As he was looking for numbers for which 

his method would yield interesting result, M127, turned out to have some desirable 

properties in terms of the applicability of result (Lu3). Thus, one can look at numbers of 

the form N ±1 = 2k, which would be easy to factor. On the other hand, N = 2k + 1 prime 

implies that k is a power of 2, as Lucas certainly knew. Thus, N ≡ 7 (mod 10), and in such 

cases (Lu2) - (Lu3) are not easily used. Thus, it is more convenient to use numbers N = 

2k – 1.  

This much said, there are various possible reasons to explain why, from all possible 

Mersenne numbers, Lucas chose precisely to use his method for testing the primality of 

M127, but there is not enough evidence to decide [Williams 1998, 60-61]. One interesting 

point is that Lucas became aware of Mersenne’s list only much later, after 1876, and that 

once he became aware of it he attributed an enormous importance to the list and 

considered it correct, on face value. Indeed, he assumed that Mersenne possessed certain 

methods that were meanwhile lost. In addition, as already remarked, the first mistake on 

Mersenne’s list was spotted only in 1883. This happened when a Russian priest named 

Ivan Mikheevich Pervušin (1827-1900) communicated to the Academy of Saint-

Peterburg that M61 is prime. The same result was independently found in 1886 by Paul 

Petter Seelhoff (1829-1896) and it was confirmed in 1887 by Jules Hudelot. Interestingly, 
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Lucas explicitly pointed out that in checking this result Hudelot had spent fifty four hours 

of calculations [Lucas 1887]. At any rate, Lucas was aware by 1887 of this mistake in 

Mersenne’s list and nevertheless his conviction about the existence of a putative, 

unknown method possessed by the latter remained unshaken. In different places, Lucas 

came up with somewhat unclear and even contradictory statements about results (his own 

as well as other’s) pertaining to Mersenne numbers and in particular concerning the 

primality of M67. To summarize I would like to state that, while Lucas certainly proved 

correctly at least once the primality of M127, it is possible that he may have proved that of 

M67 as well, but he was hesitant about it and we have no evidence to decide to what 

extent he did this correctly.  

This is, then, the background against which Cole presented his factorization of 267 -1 at 

the New York meeting of the AMS on October 31, 1903. The Bulletin of the AMS 

reports the names of the attendants to the meeting, and it is safe to assume that they knew 

very little of this story. The Bulletin does not report if, as Bell recounted, this was a silent 

presentation followed by a standing ovation, but it did publish a short note by Cole with 

details of his motivation and the method followed for finding the factors [Cole 1903]. 

Briefly stated, Cole relied on techniques such as introduced by Legendre and used 

existing tables of quadratic remainders based on representations of the form (*), a method 

that had been standard for factorizing for decades now. He discussed thoroughly the 

possible candidates of factors obtained with the help of this technique, together with 

some specific considerations for the case in point, and gradually focused on a reduced 

number of candidates which he tried one by one until he found the result. Cole was aware 

of Lucas’ announcement that 267 – 1 and 289 -1 are composite, and he was also aware of 
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Seelhof’s result of 1886. Most probably, he was not fully aware of Lucas’ method and of 

his hesitations, and certainly not of Lucas’ reasons for the latter. But from his description 

of how he reached his result it is clear that he relied strongly on a wealth of theoretical 

considerations about the properties of primes of various specific forms and that such 

considerations led him to reduce to a manageable size the range of possible values to be 

take into account as possible factors. From all we know, the calculations he did, whether 

they took three years of Sunday afternoons or not, were done manually and without the 

aid of any mechanical device. It will be almost fifty years before the next instance of a 

Mersenne prime would be found. This happened only after digital computers were used 

to solve number theoretical questions. I will retake this thread below in section 7. 

Before concluding this section, however, it is necessary to mention that the search for 

Mersenne primes and, more generally, for techniques of primality testing, led to the 

development of mechanical devices specifically conceived for these specific kinds of 

tasks. Indeed, we have already seen the very algorithmic spirit of Lucas’ methods. 

Several engineers found out that these methods could be embodied in a series of 

ingenious devices that could turn the necessary calculations into mechanized tasks. The 

earliest announcement of the ideas of such a machine dates from 1887 when Lucas 

himself mentioned the work of the engineer and inventor Henri Genaille on an 

Arithmetical Piano that could be used for finding instances of Mersenne primes. It is 

quite possible that this machine was never built. For reasons of space I will not describe 

here the various attempts to construct such devices following the publications of Lucas’ 

methods. Suffice it to say here that when DH Lehmer came up in 1932 with his 

photoelectric sieve he was just one more link on an interesting chain of inventors that, 
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working essentially on the margins of the great traditions of research in number theory, 

undertook to develop mechanized procedures for discovering individual instances of 

prime numbers in general and of Mersenne primes in particular [Williams 1998, 141-

168]. At the same time it is important to stress that some further results were obtained by 

rude-force calculation. M89, for instance, was found in 1911 to be prime by a railroad 

employee named R.E. Powers, who used a plain calculating machine. Powers also 

showed in 1914, using the same method, that M107 is prime while M103 and M109 are 

composite [Powers 1911; Powers 1914]. 

 

3. Irregular Primes 

A second perspective from which to consider the question of computations in number 

theory is the one afforded by “irregular primes”.5 Regular and irregular primes were 

identified by Kummer in the 1840s in connection with his work on the problem of higher 

reciprocity and with some attempts to prove FLT. Calculations of individual cases of 

irregular primes became subsequently associated with the proof of individual cases of the 

latter conjecture. Indeed, in 1850 Kummer proved that FLT is valid for all regular primes 

and in 1857 he proved that it is valid for all irregular primes (and hence all powers) under 

100. (Curiously, though, Kummer never coined any term to denote this special case of 

primes.) 

                                                 
5 This section summarizes material that I have discussed at greater detail in [Corry 

2008a]. 
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Kummer’s ideas are interestingly related to a discussion held in 1847 at the Paris 

Academy. Participants in this discussion were several prominent mathematicians, 

including Gabriel Lamé (1795-1870), Augustin Louis Cauchy (1789-1857) and Joseph 

Liouville (1809-1882). The discussion turned around a possible proof that had been 

suggested for FLT, which was based on representing a sum of integers as a product of 

complex numbers, as follows: 

xp + yp= (x + y)(x + ry)(x + r2y) … (x+rp-1y)      (**) 

Here p is an odd prime number, and r is a complex number called a primitive pth root of 

unity, namely, a number that satisfies the condition: rp = 1 and r ≠ 1. A domain of 

complex numbers generated by a pth root of unity is called a “cyclotomic field”, k(ζp). 

The strategy was to start from (**) and to apply the method of “infinite descent” in order 

to lead to a contradiction that would prove the theorem. Now, a fundamental property of 

the integers is that when one factorizes an integer number (or an expression involving 

integers like the left-hand side of (**)) into a product of primes, this can be done in an 

essentially unique way. An implicit assumption behind this intended proof was that this 

condition of uniqueness is satisfied also when the numbers in the right-hand side of (**) 

are “prime integers” (in a well-defined sense) within k(ζp).  

Several years prior to that, however, as part of his research on higher reciprocity, 

Kummer had investigated the behavior of cyclotomic fields and he was aware that this 

assumption is not generally valid for such domains. On hearing about their intended 

proof, he wrote to Liouville informing that in 1844 he had already published a 

counterexample to that assumption. He also wrote that his new theory of “ideal complex 

numbers” restored a somewhat different kind of unique prime factorization into these 
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fields. Also the idea of regular primes was associated with his research on cyclotomic 

fields. 

The basic definition of a regular prime is quite complex and of little practical value when 

it comes to identify individual primes as regular or irregular. It is based on the concept of 

“class number” hp of a cyclotomic field k(ζp), a number which provides a “measure” of 

the failure of unique factorization of integers in that domain. Thus, the prime number p is 

said to be regular whenever p does not divide hp. Calculating class numbers may be a 

difficult task, but fortunately Kummer very soon found a surprising, and much more 

operational criterion for allowing the identification of regular primes, this one based on 

the use of so-called “Bernoulli numbers”.  

The Bernoulli numbers appeared for the first time in 1713 in the pioneering work of 

Jakob Bernoulli on probabilities, and thereafter in several other contexts. Euler, for 

instance, realized that they appear as coefficients Bn of the following Taylor expansion:  
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He was also the first to calculate actual values of the coefficients. There are also several, 

well-know recursion formulas to calculate them. Given that for all odd indexes n greater 

than 1, Bn = 0, I follow in this article a simplifying convention, namely, to consider only 

even indexes.6 In these terns, the first few values of Bn are: 

B1 = 1/6 

                                                 
6 This convention was normally used by Vandiver and the Lehmers, whose work I make 

reference to here. 
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B2 = - 1/30 

B3= 1/42 

B4 = - 1/30 

B5 = 5/66 

 B6 = - 691/273 

Kummer showed that a prime p is regular iff it does not divide the numerators of any of 

the Bernoulli numbers B0, B2, …, B(p-3)/2. Already in the lower cases one sees that B6 = - 

691/2730, which shows directly that 691 is an irregular prime.  

Kummer developed his ideas on ideal complex numbers and on irregular primes as part 

of his own involvement with arduous calculations with individual cases of products and 

factorization with number in cyclotomic fields. Meticulously drafted tables that were 

preserved in his archives provide clear evidence to this. Thus, for instance, it is known 

that the lowest case for which unique factorization fails in the cyclotomic fields k(ζp), in 

cases like (**) above, is p = 23. Kummer obviously had made extensive and difficult 

calculations with numbers of all kinds before coming to realize that a case like this one 

may arise at all. Using the values of Bn known at the time, he worked out all the 

computations necessary to see that the only non-regular primes he found below 164 were 

37, 59, 67, 101, 103, 131, 149, and 157. He did not go beyond 164, possibly because of 

the complexity and length of the calculations involved. On the other hand, for all 

irregular primes under 157, he found that the class number was divisible by p only, 

whereas for p = 157, the class number is divisible by 1572 and then again not by 1573. 

This result had important consequences in his treatment of FLT for powers which are 

irregular primes.  



Corry - Primes 

 - 28 - 

Kummer initially believed that there would be infinitely many regular primes and that, in 

turn, only a few primes would be irregular. That this is not exactly the case became clear 

many decades later, as will be seen below. After he proved FLT for regular primes in 

1850, he naturally asked himself how to go about the case of irregular primes. He 

brilliantly developed three criteria that provided a sufficient condition for the validity of 

FLT for any given irregular prime p. Checking these criteria for a specific p involves a 

considerable computational effort, but they do yield clear results. Kummer was by no 

means the mathematician to be intimidated by the need to make the necessary 

calculations. And indeed, in 1857 he published a famous article that broke new ground, 

both conceptually and in terms of specific calculations. It introduced the three said 

criteria and proved that each of the three irregular prime smaller than 100 satisfies them. 

He thus achieved the very impressive result that FLT is valid for all exponents under 100. 

It is noteworthy that Kummer never published his calculations nor explained any specific 

formula that perhaps facilitated these calculations. But clearly, the latter were lengthy and 

demanding. Indeed, Kummer’s work turned out to contain some relatively minor 

inaccuracies, but this was found out for the first time only in 1920 by Harry Schultz 

Vandiver (1882-1973). It was clear by 1856, at any rate, that Kummer’s results might be 

extended with additional calculations involving Bernoulli numbers. This would require, 

in the first place, to add new values to the list of known ones, and this is a main point 

where intensive calculations for table-making enter the story.  

It is important to stress, that given Kummer’s willingness to undertake extensive and 

detailed computations, and given his full domain of the theoretical aspects of the problem 

at hand, his results on FLT can be taken to indicate the material limit to which this 



Corry - Primes 

 - 29 - 

approach could be extended at that time. Relatively few new Bernoulli numbers were 

computed in the following decades (see next section) and when they were computed, the 

motivation never came – before Vandiver and his collaborators – from number theoretical 

concerns (certainly not from attempts to deal with FLT). Very much like in the case of 

Mersenne numbers, this situation in connection with irregular primes was mainly a 

consequence of the limited role accorded in the second half of the nineteenth-century 

within number theory (at least by some of its most prominent practitioners) to specific 

computations with particular cases.  

 

4. Number Theory and Electronic Computers  

Having presented in the two previous sections the early stages of the history of 

calculations of specific values of Mersenne primes and irregular primes, I jump now 

directly to the late 1940s, when the first electronic computers made their appearance. 

Some classical problems in mathematics were soon seen as a challenging test for the 

computing power of the new machines as well as for the programming skills of those in 

charge of operating them. A well-known, remarkable early instance of this came as early 

as 1949, when John von Neumann (1904-1957) suggested that ENIAC might be used to 

calculate values of π and e up to many decimal places. Von Neumann was interested in 

questions of randomness and particularly in the developing possible tests for checking 

randomness, and the decimal expansions of these two numbers seemed to offer useful 

instances of random sequences of integers where such test could be initially tried 

[Reitwiesner 1950].  
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More closely related with the topic of this article is the case of Alan Turing (1912-1954) 

who in 1950 became involved in the development and early use of the Mark I at 

Manchester and combined many of his previous mathematical interests as he applied the 

machine to investigating Mersenne primes and to the Riemann Conjecture [Booker 

2006]. In fact, the first to explore the possibility of looking for Mersenne primes with the 

help of the Mark I was Turing’s colleague Maxwell H. Newman (1897-1984), and Turing 

went on to develop and improve his ideas. No actual result came out of their efforts, 

however. The first instance of a new prime number identified with the help of an 

electronic digital computer came in 1951 when Jeff Miller and David Wheeler (1927–

2004) used EDSAC at Cambridge to find several primes of the form k·M127 + 1. Among 

them was the largest known prime at that time, 180(M127)
2 + 1, a 79-digit number. This 

result was soon followed by the discovery in 1952 of several new instances of Mersenne 

primes by Raphael Robinson (1911-1925), about which more is said below.  

The application of digital electronic computers to problems in pure mathematics and 

particular in number theory implied a less straightforward process, however, than it may 

appear at first glance. In the first place, the new machines were funded with very specific, 

and more mundane purposes in mind, such as the calculation of ballistic trajectories 

related with artillery. Obviously, administrators had little direct interest in allowing the 

use of expensive CPU time for solving esoteric problems with no visible, direct 

application. But limitations also came from the side of the mathematicians working in 

mainstream “pure” fields. Very often they showed little interest in exploring the 

possibilities opened for their disciplines by this new technology. This was the case even 

when they had themselves been involved in wartime efforts related with electronic 
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computers. Number theory, in particular, presents a very interesting case of reticence to 

the adoption of computers as a significant tool in the discipline, precisely because of a 

more general reticence to calculations with individual cases, as I already commented 

above. Of course, the very innovation implied in the use of electronic computers in terms 

of speed, accuracy and the magnitude of values that could be calculated, would gradually 

affect the attitudes of many and would allow for the incursion of this tool into the 

discipline. But the point I want to make here is that not only technological questions 

related with the computer itself and its development affected the pace of this process, but 

also other factors which I will mention in what follows.  

To make the historical picture more concrete at this point, it is convenient to look now at 

various timetables related to specific calculations with individual instances of primes of 

various kinds. This provides a schematic summary of the changes in the intensity and 

attention accorded to mathematical activities of this kind throughout the years, and in 

particular of the slow adoption of electronic digital computers as a main tool for 

performing related tasks. Let us consider, first, the table of discoveries of Mersenne 

primes: 

Year Discoverer Index 

1558 Cataldi 17, 19 

1772 Euler 31 

1883 / 1886 Pervusin / Seelhof 61 

1911 - 1914 Powers 89, 107 

1876 Lucas 127 

1952 Robinson 
521, 607, 1279, 

2203, 2281 
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I did not include in the table information about proofs of non-primality of certain cases or 

of calculations leading to the discovery of the factors of some specific cases.7 Nor does 

the table provide information about many unsuccessful attempts of various kinds. And 

yet, even with these limitations the table shows an evident lack of linearity in the 

discovery of new instances, and this cannot be explained simply by the passage of time. 

The large gap between 1914 and 1952, for instance, is obviously related to the 

introduction of electronic computers. But the availability of electronic computers does 

not in itself explain when and how they were adopted, why some other devices of 

mechanical calculations were not successfully adopted before for the same calculation, 

and why Mersenne primes, and not other kinds of numbers, were calculated at earlier or 

later times. That additional explanations are necessary is more clearly manifest when 

looking at the timetable of calculations related with irregular primes, which appears here:  

 

Year Discoverer Result 

1850 Kummer Irregular primes up to 157 

1915 Jensen Infinitness of irregular primes 

1930 Vandiver Irregular primes up to 293 

1939 
Vandiver, Lehmer, 
Lehmer 

Irregular primes up to 619 

1954 
Vandiver, Lehmer, 
Lehmer 

Irregular primes up to 2000 

1955 
Vandiver, Selfridge, 
Nicol 

Irregular primes up to 4002 

 

                                                 
7 For some additional information see  

http://primes.utm.edu/mersenne/LukeMirror/biblio.htm#lit_012.  
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Why did no one after Kummer and before Vandiver calculate new values of irregular 

primes? What led Vandiver and the Lehmers to be involved in such calculations between 

1930 and 1939? Why didn’t they adopt electronic computers earlier to continue their 

previous calculations? Why did it take so long before Jensen’s result of 1915 and in what 

circumstances did he pursue the research that led to it? Similar questions will arise when 

looking at the respective table of Bernoulli numbers:  

 

Year Discoverer Result 

1840 Ohm Up to B31 

1878 Adams Up to B62 

1907 Serebrenikov Up to B92 

1936 Lehmer Up to B196 

1953 Lehmer, Lehmer Up to B214 

 

There is a clear relation between Lehmer’s work on Bernoulli numbers and on irregular 

primes for FLT. But as will be seen below, his calculations with Bernoulli numbers were 

not obviously received as a result that deserves attention. Lehmer was intensively 

involved in number theoretical calculations from an early stage in his career and, after a 

short experience with ENIAC, he was among the first to use electronic computers for 

number theoretical questions. In this sense his work offers an interesting perspective on 

the issue of the changing attitudes of mathematicians to mass computations with 

individual cases in number theory. I explore this work in the next section. 
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5. The Lehmers, Vandiver, and FLT  

DH Lehmer ’s overall mathematical conceptions and outlook were strongly influenced by 

those of his father, Derrick Norman Lehmer (1867-1938), who was professor of 

mathematics at Berkeley and had a great interest in computations and aids to 

computations. In 1909 DN Lehmer published a Factor table for the first ten millions 

[Lehmer DN 1909] and in 1914 a List of prime numbers from 1 to 10006721 [Lehmer DN 

1914]. DN Lehmer had very strong opinions about the experimental character of 

mathematical research, and accorded a central role to tables in general. He stated such 

views as follows [Lehmer DN 1914, vi]:  

In spite of the contention of certain eminent scientists that mathematics is a science that has 

nothing to do with observation and experiment, the history of the Theory of Numbers has been 

chiefly made by those who followed methods closely allied to those of the student of the natural 

science. Gauss himself, the most successful investigator of the field, was an indefatigable 

computer, as may be seen by consulting the long list of table in his collected works. Jacobi was 

also a tireless maker of tables. It is hardly likely, indeed, that any theoem of importance in the 

Theory of Numbers was ever discovered which was not found in the first place by observation of 

listed results.  

In 1929 he came up with an innovative method of mechanizing factorization processes 

based on the use of Factor Stencils [Lehmer DN 1929]. The basic idea behind the use of 

the stencils was to mechanize part of the process involved in Legendre’s approach to 

finding candidates for factors, as explained above. The stencils embodied a 100 × 50 

matrix on which quadratic residues of all primes up to 5000 were represented by means 

of punched holes. Taken together, this allowed for gradual elimination of possible 

candidates for being factors of a given number N, by reference to the stencils representing 
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its quadratic residues. Technically, the reduction was done by stacking on top of each 

other the stencils selected for a given N. The stencils were provided with a box having a 

glass cover. An electric light was introduced into the box so that light would shine 

through the holes, thus revealing the possible candidates for the given N [Williams 1998, 

142-144].  

In developing the stencils projects DN Lehmer was assisted by his son, Dick, as well as 

by his student Emma Trostakya (1906-2007), who would soon become Dick’s wife and 

mathematical partner of a lifetime. DH Lehmer inherited many of the abilities of his 

father as well as the latter’s interest in number theory and in mechanized computation. In 

1932 DH Lehmer constructed, now with his father’s help and encouragement, the highly 

ingenious photoelectric number sieve that was already mentioned above. This was a 

rather sophisticated improvement of earlier sieve he had built as an undergraduate, based 

on a set of bicycle chains hanging on sprockets attached to a shaft and turned by an 

electric motor [DH Lehmer 1933]. The photoelectric sieve required a rather complex 

setup before it could be used for each new separate case. Thus, in spite of its promise and 

the interest it aroused even in extra-mathematical circles, it was never really put to use. In 

building his next sieve in 1936, DH Lehmer paid much more attention to its ease of use 

as a main guideline for design and implementation. This was a variation of his first sieve, 

but the bicycle chains were replaced by loops of 16 mm movie film leader. This sieve had 

many of the desired advantages over the previous models, but nevertheless it did not 

become a device that was consistently put to use. Starting in 1945, DH Lehmer and 

Lemma became involved with electronic computers, such as ENIAC and SWAC, and 

used them, as will be seen below, as arithmetic sieves. And yet, interestingly enough, DH 
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Lehmer continued to construct special-purpose sieves similar in their basic architecture to 

his earlier ones. Thus for instance, in 1965 he built a Delay Line Sieve which he 

continued to use until 1975 for factoring and for studying the properties of certain integer 

sequences [Williams 1998, 192-195].  

Side by side with the construction of these mechanical devices, DH Lehmer also devoted 

much attention to the theoretical side of his interest in numbers. In 1930 he finished his 

doctoral dissertation were he improved Lucas’ methods. The dissertation presented what 

became known as the famous Lucas-Lehmer primality test for Mersenne numbers. DH 

Lehmer obtained his degree at Brown University, under Jacob D. Tamarkin. Emma was 

awarded there her M.Sc. at roughly the same time. Emma, it is interesting to point out, 

never completed a PhD or had a permanent teaching position, but this was only due to 

technical circumstances, such as the fact that university rules prevented at various places 

a husband and wife teaching in the same department. This fact, however, never prevented 

her from actively pursuing her mathematical interests both alone and in collaboration 

with Dick, and of being a leading member of the USA number theory community. Indeed 

she was completely satisfied with this institutional situation and was able to make the 

best of it, as she argued in a delightful essay called “On the advantages of not having a 

Ph.D” [Brillhart 1992]. 

Emma and DH Lehmer moved to Lehigh in 1932 and it is there that they started a long-

standing collaboration with Vandiver. Vandiver’s personal and professional story is an 

interesting one, as he was the only mathematician in history whose entire professional 

life was devoted to solving FLT [Corry 2007]. He was a high-school dropout and a self-

styled autodidact whose choice of problems and research agenda sensibly diverged from 
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the mainstream of number theory. One should keep in mind that after Kummer’s work on 

FLT it was possible in principle to continue the search for irregular primes. For each new 

irregular prime found, one might check if Kummer’s criteria applied. Also, as it was clear 

from the beginning that the criteria he developed could not account for all cases, there 

was also room for refining and further elaborating criteria of this kind, in order to find 

more efficient tests for proving FLT for a given prime irregular exponent. Nevertheless, 

very little research was done in this direction in the following decades, thus reflecting the 

rather marginal status of FLT in the overall panorama of number theory [Corry 2008a]. 

More concretely, the important result that there are infinitely many irregular primes was 

proved by Jensen only in 1915. To be sure, the proof of this result did not contain any 

conceptual innovation and it was published by an unknown student in a remote Danish 

journal [Jensen 1915]. Moreover, the first report of this result in an English publication 

appeared only in 1928 [Vandiver and Wahlin 1928]. In choosing FLT as the main focus 

of his research agenda and in taking up where Kummer had left, Vandiver was following 

a path that had little in common with the mainstream of the discipline. This unusual 

choice can be explained, at least partly, by reference to Vandiver’s original path in 

mathematics, and also by the lack of a strong community of number theorists in the USA 

during the early stages of his career.  

Vandiver’s first article on Fermat’s Last Theorem appeared in 1914 in Crelle’s Journal 

[Vandiver 1914]. Over the years, he continued to present short communications on FLT 

to the AMS containing, among others, improvements and simplifications of Kummer’s 

criteria. In 1931 he was awarded the first Cole prize established by the AMS for 

outstanding research in number theory. This came in recognition to a series of works on 
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FLT summarized in a detailed article published in 1929 in the Transactions of the AMS 

[Vandiver 1929]. Up to this stage Vandiver was able to extend Kummer’s results to a 

point where he proved the validity of FLT up to p = 269. Besides refining the Kummer-

type criteria for proving the theorem in the case of irregular exponents Vandiver also 

worked on the side of the Bernoulli numbers. He proved several new congruences 

involving Bernoulli numbers in order to allow more efficient calculations related with the 

Kummer criteria and improved existing methods for calculating increasingly high 

instances of Bernoulli numbers. He also coordinated the work of various graduate 

students who would perform specific calculations for sets of cases that they were 

assigned. The students assisted themselves with then available electro-mechanical 

calculators. Vandiver also relied on existing mathematical tables of various kinds, but he 

systematically reassured the readers that these tables had been re-checked independently 

by comparing one with the other. 

Within the small number theoretical community that worked in the USA at the time, 

Vandiver and Derrick Norman Lehmer were in close working and personal relationships. 

It is thus small wonder that when DH Lehmer and Emma had started their professional 

lives in the early thirties, with jobs scarcely available around, DN Lehmer established a 

contact between them and Vandiver. Vandiver had just been able to raise some funds 

with the American Philosophical Society for his FLT project and these were used to pay 

for the work of DH Lehmer and Emma [Corry 2008b]. An immediate concern addressed 

by the Lehmers related to the improvement of the recurrence formulae for calculating 

Bernoulli numbers. DH Lehmer devised a new method based on “lacunary recurrence”, 

namely, one in which only some of the previous values are used for calculating each new 
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one [Lehmer 1935]. He took as reference existing tables of Bernoulli numbers and 

applied his newly developed method to check, in the first place, that the results coincided. 

Then, he went on to calculate values of up to B196.  

It is remarkable how early the Lehmers became clearly aware of the requirements that a 

properly implemented computing procedure should comply with. For example, in their 

correspondence they continually raise concerns about the degree of efficiency of the 

methods used for calculations, the estimated timings, the reliability of the results, and, no 

less than that, the clarity of presentation. In a letter to Vandiver in 1934, for instance, DH 

Lehmer wrote:8 

We have B96 and are well on the way towards B99. I think that the average time required for each 

B will simmer down to abut 20 hours. About 1/3 of this time is used in typing results and 1/10 of 

it in checking. Of course, the final check (the exact division of a 250-digit number by a 50-digit 

number) would be sufficient, but coming as it does at the end of 20 hours it is necessary to check 

more frequently. We use as an additional check the casting out of 1000000001.  

Calculating the value of B105 – he reported a few weeks later – had required 70 hours to 

complete.  

But it is clear that the most pressing concern that arose in connection with this research 

pertained to the matter of publication itself: who would want to publish this kind of 

results and what exactly should be published? What tables? How many results for each 

                                                 
8 DH Lehmer to Vandiver: November 20, 1934. This and following letters are kept in the 

Vandiver Collection, Archives of American Mathematics, Center for American History, 

The University of Texas at Austin (hereafter cited as HSV). They are quoted with 

permission of the CAH.  
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case? As a matter of fact, DH Lehmer understood that the very task of calculating new 

values of Bernoulli numbers was not one that his mathematical colleagues would hold in 

high esteem. He thus opened his 1935 article by trying to justify the task itself. He thus 

wrote [Lehmer 1935, 637]:  

The reader may question the utility of tabulating more than 93 Bernoulli numbers, and hence the 

need of giving formulas for extending their calculations. It is true that for the ordinary purposes 

of analysis, for example in the asymptotic series of Euler MacLaurin summation formula, a dozen 

Bernoulli numbers suffice. There are other problems, however, which depend upon more subtle 

properties of the Bernoulli numbers, such as the divisibility by a given prime. Examples of such 

problems are the second case of Fermat’s Last Theorem and the Riemann Zeta-function 

hypothesis. Our knowledge as to the divisibility properties of the Bernoulli numbers is still quite 

primitive and it would be highly desirable to add more to it even if the knowledge thus gained be 

purely empirical.  

Still in connection with this issue, it should also be noticed that the actual values he 

calculated were published in the Duke Mathematical Journal [Lehmer 1936], that had 

then only started to appear. This choice was not accidental and it had to do with the 

contents of the article and the reactions it elicited. As DH Lehmer wrote to Vandiver:9 

I had tried the Annals but received an immediate rejection from Lefschetz on the grounds that it is 

against the policy of the Annals to publish tables. He suggested that the tables be deposited with 

the AMS library or else published in some obscure journal. So I tried the Duke journal. 

Solomon Lefschetz (1884-1972) was at the time president of the AMS and editor of the 

prestigious Annals of Mathematics. His reported reaction merely hints to the much 

broader and complex phenomena of the status within the mathematical community (in the 

                                                 
9 DH Lehmer to Vandiver: February 10, 1936 (HSV). 
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USA and elsewhere) of mathematical tables, their elaboration and publication (more on 

this below). Evidently, Vandiver and the Lehmers had their own ideas about matters of 

this kind.  

The first article published by Vandiver and the Lehmers also appeared in Duke. It 

established the validity of FLT for all exponents p, 2 < p < 619, except possibly for 587. 

The latter case raised some computational difficulties which were nevertheless overcome 

very soon [Vandiver 1939]. It was also clear by this time, that above 619 the calculations 

became prohibitively long and laborious for being carried out with a desktop calculator.  

The early collaboration between Vandiver and the Lehmers was interrupted at this point 

and it would resume only in 1952. There was, of course, a world of difference between 

the two stages of this collaboration, clearly separated from each other by the war and its 

aftermath and, in particular, by the introduction of electronic computers. In section 7 the 

story of this collaboration will reappear as one component of the Lehmer’s broader 

computational activity in number theory. Before reaching that, however, I describe in the 

next section some significant contemporary processes that shaped the context within 

which this activity took place in its various stages.  

 

6. Traditions and Institutions in Number Theory  

In the foregoing sections, I have pointed out several times that the mathematicians 

involved in massive calculations with individual cases were mostly working at the 

margins of the mainstream and away from the leading centers of the discipline. In this 

section I would like to elaborate on this point, and to explain the importance of this issue 
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as part of the present story. In doing so, I will also refer to communities of researchers 

and to academic and governmental institutions and initiatives, as factors that significantly 

contributed to shaping research agendas in number theory.  

I return briefly to the aftermath of the publication of Gauss’s Disquisitiones, which I 

defined above as a watershed in the history of the theory of numbers. One of the most 

salient threads that is clearly discernible in the history of the discipline is the one that led 

from Disquisitiones to the work of Kummer, to the creation of the theory of fields of 

algebraic numbers with Kronecker and Dedekind, and from there to a significant peak at 

the turn of the century with Hilbert’s Zahlbericht. This thread involved a highly abstract 

and sophisticated approach which, as already stated, attributed very little interest to 

computations with specific cases. Another thread that developed in parallel is the one in 

which analytic tools become prominent and that led through the work of Peter Lejeune 

Dirichlet (1805-1859) to the rise of the analytic tradition in number theory (of which very 

little is said here).  

From a broad historical perspective, the works associated with these two main threads are 

those that can be more prominently associated with achievements of long-standing impact 

in the discipline of number theory as it developed from the mid-nineteenth century on. It 

is important to point out, however, that in their early stages, the ideas related to both the 

analytic and the algebraic thread in number theory attracted relatively little attention. It is 

well know, for instance, that Dedekind’s theory of ideals was hardly read at the time of 

its publication, both in its various German versions and then in its French translation of 

1876-77. Number theoretical questions did attract the attention of large audiences in the 

second half of the nineteenth century, but in ways different to those that became 
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prominent in the discipline under the influence of Hilbert’s Zahlbericht. The scope of the 

ideas discussed in Disquisitiones was so broad and thoroughgoing that it led to a 

complete reorganization of the entire field around several clusters of interest and activity 

with relatively little intercommunication with each other, as Catherine Goldstein has 

clearly showed in her recent historical research. Based on a detailed analysis of citation 

networks manifest in the leading German review journal of the nineteenth century, the 

Jahrbuch über die Fortschritte der Mathematik, between 1870 and the First World War, 

Goldstein identified groups of mathematicians who shared common interests within 

number theory, used similar techniques in their research, and pursued similar objectives. 

As a rule, mathematicians associated with each of these clusters published in the same 

journals and quoted each other, thus giving rise to essentially self-contained areas of 

research. The algebraic and the analytic threads in number theory evolved from two such 

clusters but in their early stages they were not as dominant as they later became. 

Quantitatively speaking, most of the actual activity in number theory during the second 

half of the nineteenth century was connected to neither of them [Goldstein 1994; 

Goldstein & Schappacher 2007b, 71-74]. Lucas’s works and those closely associated with 

it were part of a very prolific cluster of activity that, without having evolved later on into 

a full-fledged school of mathematical research and teaching, attracted many practitioners 

and produced many remarkable results.  

This cluster of activity focused on questions directly connected with some of the basic 

topics discussed in Gauss’s Disquisitiones, such as reciprocity, and cyclotomic and 

Diophantine equations. Massive calculations with individual cases and table making 

found a natural place here. Its contributors included in a visible way not only 
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mathematicians, but also engineers, high-school teachers and university professors from 

other disciplines. They came from various countries including places without well-

developed research traditions in the field. Remarkably, very few Germans were among 

them. More than any other cluster or sub-discipline in number theory, works belonging to 

this cluster as a rule did not involve highly sophisticate mathematical knowledge. They 

explicitly avoided the use of techniques involving algebraic and complex numbers or 

analysis. Still, some of them comprised very ingenuous and innovative ideas, appearing 

mostly in the work of the more prominent mathematicians that contributed here. The 

latter included James Joseph Sylvester (1814-1897) and Angelo Gennochi (1817-1889), 

and also Lucas was one of them. The case of Lucas offers an interesting example, as he 

can be taken to be a representative figure of arithmetical research in France in the second 

half of the nineteenth century. As I already suggested above, he was essentially 

marginalized from the elite French academic milieu. The journals in which he published 

were not the leading ones, and his topics of interest were mainly neglected by the leading 

mathematicians of his time. In fact, the case of Lucas is indicative of a more general trait 

of number theory in the last third of the nineteenth century within French mathematics at 

large, being a field of activity that received scant attention at the top research institutions 

before 1910 [Gispert 1991, 86-91 & 158].  

A clearly discernible line connects Lucas, as well as other contemporary mathematicians 

pursuing similar agendas in number theory, with mathematicians like Vandiver and the 

Lehmers in the early twenty century. This is true in relation with the contents of their 

research as well as with their methodological preferences (including massive calculations 

with individual cases). This is also true in relation with their venues of publication, 
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typically not among the main journals of the profession (at least in part of their careers). 

Furthermore, this is also true in relation with the kind of professional community to 

which they belonged (this is also the case for Jensen who, as already mentioned, was a 

Danish graduate student working far away from the great centers of German and French 

number theory, who published on a local journal and whose work became known only 

much later). Vandiver was autodidact and – for that reason among others – strongly 

independent-mindedly when it came to problem choice. Also the Lehmers had, as already 

mentioned, very sui generis careers, and their horizons of mathematical interests were 

shaped with little influence of the dominant European centers. More broadly speaking, 

the number theory community in the USA was, as already hinted, rather small, somewhat 

apart from the main national centers of the time, and it comprised few prominent names. 

Besides Cole, Bell, Vandiver and the three Lehmers, the list of American mathematicians 

with some kind of significant contributions in number theory prior to 1939 is more or less 

exhausted by adding that of Carmichael (mentioned above), as well as the following: 

Hans Frederik Blichfeldt (1873-1945), Leonard Eugene Dickson (1874-1954), Aubrey 

Kempner (1880-1973), and Albert Cooper (1893-1960). Not all of them would identify 

number theory as their main field of activity.  

It is interesting to notice, however, that the situation of the number theory community in 

the USA changed dramatically after the rise of the Nazis to power in Germany, which 

brought an enormous influx of mathematicians and in particular a handful of leading 

number theorists that went on to change the face of the discipline in the country. Claude 

Chevalley (1909-1984) arrived in 1938 and, following the outbreak of war, he remained 

at Princeton and later at Columbia until 1957. André Weil (1906-1998) worked for 
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several years at Chicago and Princeton, and Carl Ludwig Siegel (1896-1991) at Princeton 

between 1946 and 1951, and their influence was felt for decades to come. Hans 

Rademacher (1892-1969) created a very active school at Pennsylvania. In 1940, Hermann 

Weyl (1885-1955) wrote from Princeton to Paul Bernays (1888-1977) that he was “trying 

to stimulate the dormant interest in number theory” in his new country.10 Number theory 

started at this time its dramatic rise in the USA with strong contributions that can be seen 

as natural continuations of the traditions that had shaped research in the discipline in 

Germany (and also, though to a lesser extent, in France) after the publication of the 

Zahlbericht.  

The more clearly computational approach that Vandiver or the Lehmers had followed for 

years had only a relatively minor influence on these developments. Still, parallel to these 

significant changes in the community, the Lehmers continued to carry on their own 

research agendas and to add new impetus to calculational methods in number theory. It 

goes without saying that this was strongly related to the appearance on stage of the 

electronic computer at the end of the war. But it is important to stress that the rise of the 

new technology does not in itself explain its very fast adoption by the Lehmers (and 

others) for research in number theory. Rather, additional – and somewhat contingent – 

historical circumstances were at play here. Indeed, the Lehmers had moved to Berkeley in 

1940 as DH Lehmer was finally offered a position there, but in 1945 DH Lehmer was 

called to work at the ENIAC project at the Aberdeen Proving Ground. Most of Dick’s 

time was devoted then to the task of computing trajectories for ballistics problems, but 

Emma and he used some of their available time over the weekends to work on questions 
                                                 
10 Quoted in [Siegmund-Schultze 1998, 247].  
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related with number theory. Thus, for instance, by June of 1946, they had computed the 

multiplicative order of 2 mod p, for many primes numbers p, p < 453871. Later on they 

calculated values of so-called Fermat quotients, (2p-1 - 1)/ p mod p, for all primes 

numbers p, p < 25000 [Lehmer 1974]. Obviously, their scientific background provided a 

unique blend of knowledge in number theory with an inclination and unmatched 

experience with calculating devices. The presence of Emma was no doubt decisive. She 

had no formal duties with ENIAC, and had the time, knowledge and availability to think 

about the possible uses of the new technology in her field of interest. This period of time 

afforded, above all, the crucial training in programming techniques and in the basic 

acquaintance with the new technology. But when the time came to return to California, 

where no similar devices were available at the time, this entire experiment may have been 

put on hold for an undetermined period of time were it not for a series of initiatives that 

developed in the postwar era in the West coast on matters related to applied mathematics 

and which created interesting new opportunities that the Lehmers were quick to become 

involved with.  

The Lehmers’ involvement with ENIAC at the end of the war had been but one instance 

of a much broader process whereby scientists of all specialties, mainly mathematicians, 

gained experience and interest in electronic computers. This gave a tremendous impulse 

to a phenomenon that antedated the war, whereby increased demand for facilities of mass 

data processing was felt at both universities and government institutions. University 

authorities in institutions like UCLA, Berkeley and Stanford took steps to contact 

industry leaders, such as IBM’s Thomas Watson, to procure for themselves equipment 

donations and to create local computing centers. The most important of these initiatives 
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came in April 1946 from the National Bureau of Standards (NBS) as it intended to create 

a laboratory for mathematical computation in one of the leading universities of the West 

coast, partly funded by the military. After a somewhat nasty competition and lobbying 

among the three universities, the decision was reached in July of 1947 to establish at 

UCLA an Institute for Numerical Analysis (INA), that started it operations by the 

summer of 1948. A main figure at INA was Harry Huskey, who designed and led the 

construction of SWAC, the Standards Western Automatic Computer. SWAC became 

active in 1950, and at that time it was the fastest computer in the world. Huskey had 

previously worked with Alan Turing in England, and had also been involved in previous 

computer projects in the USA, such as EDVAC and SEAC. SWAC was used primarily 

by the INA, but also by local aircraft companies. Besides its purely technological assets 

the SWAC project demonstrated that a computer could be built by smaller establishments 

and with less intimidating amounts of money [Huskey 1997, Huskey et al 1997, Rutland 

1995]. 

Personal and political circumstances played now a role in helping materialize the 

connection between the Lehmers (and hence number theory) and SWAC. In 1949 all 

university employees at Berkeley were required to sign a new oath of loyalty to attest 

nonmembership in organizations that advocated the overthrown of the government, 

particularly in the Communist party. This requirement, which was part of a broader 

phenomena commonly associated with the McCarthy era, gave rise to a passionate 

controversy and to the dismissal, in August of 1950, of twenty-four faculty members who 

refused to sign. They were only reinstated by the end of 1952 after the California 

Supreme Court declared the oath unconstitutional [Moore 2007, 119-136]. DH Lehmer 
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initially refused to take the loyalty oath, and he finally signed under duress. But he took 

leave of absence and it was quite clear that he would not return unless the controversy 

would be settled satisfactorily. But contrary to other members of the faculty, losing his 

position at Berkeley would not become as acute a problem for him as it was for many 

others. Indeed, at the very early stages of the negotiations for creating INA, DH Lehmer 

had been contacted as a possible candidate for directing it, and now, in 1951 he was 

invited to become director [Moore 2007, 107-116]. In this capacity he was able to devote 

significant computer resources of SWAC to problems in number theory, as will be 

described in the following section. 

  

A last, related point I would like to discuss in this section concerns professional journals 

and venues of publication. In the previous section it was seen that mathematical tables 

and, more generally, results related to computations with individual cases (such as new 

values of Bernoulli numbers), did not find a natural and self-evident place in leading 

mathematical journals at the time. DH Lehmer published some of his early results in the 

Duke Mathematical Journal which was then in its beginnings, and this was certainly not 

his preferred choice. Many results of the joint work with Vandiver were published in the 

Proceedings of the National Academy of Sciences, which, as Vandiver wrote to Emma, 

“has a rule to the effect that any member presenting a paper for publication … is entitled 

to have it published”.11 This lack of suitable venues was solved by the foundation of a 

new journal, outside the mainstream mathematical establishment, willing to publish 

                                                 
11 Vandiver to Emma Lehmer, October 30, 1953 (HSV). 
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material such as the Lehmers were producing. The interesting point is that with time the 

new journal became a highly prestigious journal of the AMS, Mathematics of 

Computation. I say a few words about this now.  

I mentioned above that Kummer had produced elaborate tables of results related with his 

work on cyclotomic fields. These were not published as part of his work. In the first part 

of the nineteenth century, mathematical tables of various kinds were for some time 

published in leading venues such as the Journal for reine und angewandte Mathematik 

but very soon such journals were not considered anymore the right place for doing this. 

Tables as well as result related to computations with individual instances were confined 

to separate publications. In the last third of the nineteenth century the need for new and 

more accurate tabulated values of special functions became increasingly pressing for 

astronomers, engineers and physicists. Several initiatives were undertaken in order to 

cope with these needs and institutions were created as part of such initiatives. An 

interesting example of how table making was institutionalized came with the creation of 

the British Mathematical Tables Committee, under the leadership of James W.L. Glaisher 

(1848-1928) and the active participation of mathematicians such as Arthur Cayley (1821-

1895) and Henry J.S. Smith (1826-1883), and the two leading British mathematical 

physicists, Sir William Thomson (1824-1907) and Sir George Stokes (1819-1903) 

[Croarken 2003].  

Corresponding to the main motivations behind the creation of the Committee, most of the 

tables they compiled and published were devoted to functions of use in applied 

mathematical fields: elliptic functions, Legendrian functions and Bessel functions. But 

from very early on, the infrastructures and abilities of the Committee and its associated 
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members and workers were also used for computations related with number theory. In 

1873, factor tables of up to three millions were published and these were extended to nine 

millions in 1883. In 1899, the Committee supported the work of Allan Joseph 

Cunningham (1842-1928) and published tables of residues of powers of 2, to be used for 

testing divisibility, for factorizations, and for solving congruences to base 2. Upon his 

death, Cunningham bequeathed a moderate legacy to the Committee to be used in the 

production of new number theory tables. The money was also used to purchase 

calculating machines for the committee’s current activities and to publish, with a delay of 

more than thirty years, additional number theoretical tables (divisor and power tables) 

that had been prepared by Glaisher but had remained unpublished theretofore. All of this 

happened in a period when the secretary of the Committee was the dynamic Leslie John 

Comrie (1893-150). Comrie joined in 1915 the Nautical Almanac Office and by 1928 he 

had completely mechanized its processes for table making and brought with him many 

technical, conceptual and organizational innovations to the Committee’s activities 

[Croarken & Campbell-Kelly 2000, 50-52].  

The Mathematical Tables Committee was a remarkable example of an institutional 

initiative that fulfilled a task that individual mathematicians typically left out of their 

agendas. The tables it elaborated were published only as large volumes that were updated 

periodically. This was the classical approach to table publication, and we have seen that it 

is the one followed by DN Lehmer for his own tables of prime numbers and related 

topics. But this was not a useful approach to follow when it came to tables that were too 

small or too specialized. In this regard, the Committee came up with an initiative, not 

before 1950, to actively collect unpublished mathematical tables and to deposit them in 
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the Royal Society Library [Croarken 1990, 251-256]. This was not the only place where 

such tables were deposited, and as was seen above, Lefschetz had also suggested Lehmer 

in1936 to deposit his tables with the AMS. As a matter of fact, the need to organize 

knowledge on existing tables had been felt since the end of WWI, and the USA National 

Research Council started back then a series of initiatives in this direction. In 1930 the 

council created a new Committee on the Bibliography of Mathematical Tables and Other 

Aids to Computation that would review not only existing mathematical tables but also 

existing computing machinery. After some delays and failed attempts a real leader for 

this project was found in 1939, who gave the necessary impetus to make it work. This 

was Raymond Claire Archibald (1875-1955), from Brown University [Grier 2001, 

Polachek 1995].  

Archibald was essentially a historian of mathematics with a natural inclination to 

acknowledge the value of bibliographical work [Archibald 1948]. He had built a 

remarkable collection of about four thousand mathematical tables. The most significant 

step that Archibald undertook as chair was the founding in 1943 of the journal 

Mathematical Tables and Other Aids to Computation (MTAC), meant to expand the 

influence and scope of the Committee. The NRC did not initially support this initiative, 

but Comrie, who had been assisting the activities of the Committee form its inception 

strongly encouraged it, and his attitude proved crucial.  

Archibald did most of the writing for the first two issues. In the introduction to the first 

issue he stated that the aim of the journal was “to serve as a clearing-house for 

information concerning mathematical tables and other aids to computation.” Very soon 

the journal acquired a well defined style and structure. It always started with a series of 
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tables or reports on the work of computing groups. This was followed by a section on 

new published mathematical tables, errata for published tables, and a list of unpublished 

tables. In the same introductory note, Archibald wrote that during the past decade 

computation devices had “been vastly multiplied”. Obviously, he was not speaking about 

high-speed electronic devices, but rather about a series of different kind of machines such 

as Vannevar Bush’s Differential Analyzer, desk calculators then at use, the Burroughs 

Bookkeeping Machine, the Hollerith Multiplying Punch, and others which he later 

reviewed in the first issues of the journal.12 Moreover, until recent times, large 

computational projects were still being conducted in the form of coordinated calculations 

involving large of groups of human computers with well defined tasks [Lowan, 1949, 

Grier 2003]. 

As the founding of this journal was nearly contemporaneous with the building of the first 

electronic computers it affords interesting insights to the complexity of the process of 

absorption of the new technology into the mathematical discipline and its institutions. In 

particular, it provides important contextual background to the use computers were put to 

use by the Lehmers in number theory. The Committee on High-Speed Computing 

Devices was established in 1946 by the NRC, with the participation of leading figures 

such as Von Neumann and Howard Aiken (1900-1973). The Association for Computing 

Machinery was established in 1947. Both institutions sought from very early on to 

collaborate with MTAC, and as a matter of fact, the ACM continued to use the MTAC as 

its main venue of publication until 1953. This was the only scientific journal in which the 

continued development of computing devices was steadily discussed, but the need for a 

                                                 
12 See MTAC, Vol. 1, pp. 63-64, 96-97, 127-129, 165-167, 
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more specialized journal became gradually evident. The Journal of the ACM was founded 

only in 1954.  

It is noteworthy that while the main aim of the Committee on High-Speed Computing 

Devices was to promote the development of new machine technology, their members also 

cared initially not to slow down in any way existing computing projects. But personal 

issues with some of the promoters of the ACM completely alienated Archibald from this 

new institution. In June 1949 he resigned the editorship of MTAC and DH Lehmer took 

the job. Lehmer edited the journal successfully but the entire conception of what 

computation is about underwent a deep transformation during the time of his editorship. 

Mathematical computation and the kind of pursuits embodied in MTAC became a 

relatively reduced part of the more general, emerging idea of computer science. 

Moreover, the traditional roles of mathematical tables gradually became obsolete, and 

thus the readership of MTAC was constantly reduced. Eventually the journal would 

become in 1960 Mathematics of Computation, under the editorship of Harry Polachek 

(1913-2002). Several professional societies expressed their interest in overtaking the 

responsibility for the journal, among them the Society for Industrial and Applied 

Mathematics (SIAM), the ACM and the AMS. But opinions within the AMS were quite 

divided on this issue, as a number of mathematicians considered that a journal devoted 

exclusively to computation was not a main interest of their society. It was only after 

much discussions and negotiations that the journal was finally transferred to the complete 

responsibility of the AMS in the third issue of 1965. In a retrospective account, Polachek 

summarized the processes undergone between 1959 and 1965 by the journal he had 

edited in the following words [Polachek 1995, 74]: 
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The rapid expansion and the increased pace of research activity and publication in the field of 

mathematics of computation during this period is not surprising. This was the era when the field 

of computer science came to life. It was during this period that most of the larger universities 

began to acquire advanced high-speed computer systems and to establish computer science 

departments. By 1965, even the highbrow members of the American Mathematical Society, who 

earlier looked with some measure of disdain at any mathematical research that related to 

computation. now were more willing to accept research in this field as a challenging area of 

mathematical innovation. Thus during that year the prestigious American Mathematical Society 

took under its wing, to be published as one of its own regular journals, Mathematics of 

Computation. In so doing, it recognized the field of mathematics of computation as a bona fide 

branch of mathematical research.  

 

In the next section I will describe the mathematical details of the calculations conducted 

by the Lehmers using electronic computers in relation with the question of the Mersenne 

primes. The actual historical significance of their activities will be now more clearly 

understood against the background of the institutional, technological, political, and 

disciplinary aspects just discussed in the present section. 

 

7. The Lehmers, Robinson, and SWAC  

The discussion in the previous sections allow us understanding the extent to which the 

tenure of DH Lehmer as director of INA, together with Emma’s presence without a 

formal position, and combined with the availability of SWAC, represented a unique blend 

of unlikely circumstances under which number theoretical research with computational 
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methods implemented in high-speed electronic devices was systematic pursued at this 

early stage. In this section I discuss some of the details of this research, especially in 

connection with Mersenne primes. 

As already stated, when SWAC became operational in 1950 it was the fastest computer in 

the world. It featured some of the most innovative technologies known at the time, such 

as the Williams tube memory, as well as an auxiliary magnetic drum memory of 256 

words and a punched card I/O system [Huskey 1997]. It operated with words of 36 binary 

digits or, equivalently, 11 decimal ones. Being the person most directly involved in the 

actual programming of SWAC and in experimenting with specialized code, Emma found 

the binary character of the machine especially useful for storing number theoretical 

properties such as residuacy and primality. Problems involving powers of 2 were also 

easily manageable. In addition, the rate of 16,000 additions and 2,600 multiplications per 

second – “ultra-high speed” by the standards of the day – and the availability of an 

auxiliary storage provided by the drum opened new possibilities for the study of certain 

problems in number theory in which a material limit for calculation had been already 

exhausted. This was the case with both FLT and the Mersenne primes [E Lehmer 1956].  

Three main classes of number theoretical issues were addressed with SWAC: 

1. Specific problems for which the machine could provide a definite answer: 

factorizations, primality testing, solutions of a specific Diophantine equation. 

2. Testing of open conjectures for large amount of cases and very high values.  

3. Experimental problems useful in the design of strategies for theorem proving. 
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Concerning (3) Emma Lehmer gave only one example, and this referred to very specific 

problem, called the Jacobsthals’ sums of Legendre characters. The numerical evidence 

furnished by SWAC, Emma said, “led to some theorems whose proofs were eventually 

worked out by the old-fashioned paper-and-pencil method”. 13  

As for specific problems, primality testing was no doubt the most basic of all not only 

because of its intrinsic interest, but also because in handling all the other kinds of 

problems it was often necessary to know whether specific numbers under examination 

were prime or composite. One way to compactly store a table of primes was to have a 

string with zeros or ones, according to whether the corresponding number in the sequence 

of odd integers is prime or composite. A list of the thousand first primes occupied in this 

way fourteen words of memory, and, in addition, any number up to 1,000,000 could be 

easily tested in a few seconds by straightforward trial division of consecutive primes. In 

addition, more sophisticated tests would work for larger numbers of special forms, such 

as the Fermat numbers and the Mersenne numbers. Concerning Fermat numbers, in 1953 

John Selfridge wrote a program that found the factors of F10 and F16 [Selfridge 1953]. 

This refuted an open conjecture, put forward by Lucas, according to which the numbers 

in the sequence 2 + 1, 22 + 1, 12
22 +  , … are all prime [Lucas 1891, 354-355]. The result 

for F10, on the other hand, corroborated an earlier result obtained also with SWAC, 

namely that this 363-digit number is composite. This latter result had been obtained by 

                                                 
13 [E Lehmer 1956, 108]. Probably she was referring to [E Lehmer 1955]. See also 

[Robinson 1968].  
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Robinson, who also worked on the question of Mersenne primes about which I say more 

below. 

The kind of number theoretic hypotheses tested with SWAC also tells an interesting 

story. Turing’s work on the Riemann hypothesis at Manchester in 1945, mentioned 

above, was an improvement of his own earlier attempt of 1939 to use a differential 

analyzer that would calculate individual cases according to an idea introduced by Edward 

Charles Titchmarsh (1899-1963). This attempt was interrupted by the war and it later 

became obsolete with the advent of electronic computers. Before Turing would retake the 

thread with Mark I, Lehmer had made his own attempt in 1947 to implement the 

Titchmarsh approach working with ENIAC. Before the program he was working on was 

actually run, however, ENIAC was drastically modified and this program could not be 

run anymore on this machine. Then, in 1949, even before SWAC was completed, Lehmer 

had suggested the Riemann hypothesis for testing to J. Barkley Rosser (1907-1989), then 

director of INA. Rosser accepted it, but only as a low priority project. It should be 

pointed out that in 1939-40 Rosser and the Lehmers had a very interesting, fruitful, and 

largely forgotten interchange of ideas around FLT [Corry 2008a]. At any rate, only after 

DH Lehmer took his post at INA, actual work with SWAC on the hypothesis started. 

Lehmer developed sophisticated mathematical algorithms, and these were coded by Ruth 

Horgan, a main figure in the coding side of the SWAC project. In the early stages of the 

implementation and running, the first 5,000 zeroes of the zeta function were calculated 

and for the majority of them the conclusion that they lie on the ½ line was attained 

without any doubt. Some cases did not provide a clear cut answer at the early stages. 
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Later on, further calculations were done, and by 1956 it was confirmed that the first 

15,000 zeros all lie on the ½ line [DH Lehmer 1956].14  

Two other, less-known hypotheses that were approached with the help of SWAC deserve 

some comment here. In 1919 Georg Pólya (1887-1985) had conjectured that there are more 

numbers having an odd number than an even number of prime factors [Pólya 1919]. This 

can be formally expressed with the help of the Liouville function λ(n), which takes the 

value +1 if n has an even number of prime factors or -1 if it has an odd number of prime 

factors. If we define now 
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then the conjecture states that L(N) ≤ 0, for N >1. SWAC calculated this function for 

values N < 800,000. The lowest previously known value of the function obtained at N = 

48,512, and it was L(n) = -2. This was not improved by SWAC. With little modification 

the same coding could be used to verify an associated hypothesis, commonly (and 

perhaps wrongly) attributed to Paul Turán (1910-1976), namely, that the function: 
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is positive. The interesting point is that as early as 1958 both conjectures had been 

disproven by C. Brian Haselgrove (1926-1964) [Haselgrove 1958]. Haselgrove run a 

program in EDSAC at Cambridge, and somewhat later, independently, another one in 

                                                 
14 [Meller 1958] reached 25,000.  
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Mark I at Manchester, and showed that there exists a counterexample whose value he 

estimated to be around e831.847 = 1.845 × 10361. In 1960 R. Sherman Lehman found an 

explicit counterexample, n = 906,180,359 which he calculated with Berkeley’s IBM 701 

[Lehman 1960]. Later on, in 1980 Minoru Tanaka showed that the smallest 

counterexample to the Pólya conjecture is n = 906,150,257 [Tanaka 1980]. It is 

interesting to point out that Lehman had worked at the Aberdeen proving grounds after 

graduation in Stanford and there, among other things, in 1955 he checked the conjecture 

(together with W.G. Spohn) up to n ≤ 802,000 using the ORDVAC. Lehmer met him 

there and in 1957 brought him to Berkeley [Moore 2007, 177-178]. Lehman excelled in a 

wealth of mathematical fields, and above all in computational number theory. Expanding 

on the work of Lehmer, he made the by then ground-breaking confirmation that the first 

250,000 non-trivial zeroes of the Riemann zeta function all lie on the ½ line. He devised a 

careful strategy for error bound calculation and coded in ALGOL a program run in 

Berkeley’s IBM 7090 [Lehman 1966].  

By 1956 it seemed that calculations made with SWAC had added support for the validity 

of the Riemann conjecture as well as for the other two conjectures just mentioned. It also 

had likewise seemed to add further support to FLT. One can only speculate how much 

longer it might have taken before computing resources were devoted to calculations 

related with FLT were it not for the previous collaboration between Vandiver and the 

Lehmers on this topic, and the current involvement of the latter with electronic 

computers. Although it represented a natural continuation of the work done in 1935-40, 

with a new and much more powerful technology at hand, Vandiver did not immediately 

thought that SWAC should be used for this purpose. Emma Lehmer continually informed 
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Vandiver about progress on computations with Mersenne primes, and explicitly wrote 

him that “if you have some pet problem you would like to run, I might try my hand at 

coding it and maybe we can run it after hours”.15 Amazingly, as late as April 1952, 

Vandiver was still replying to her that “no particularly numerical problem occurs to me 

that may be handled by the machine; but if one does, I’ll let you know”.16 Actual work on 

FLT with SWAC started only on June 1952, and the results of this joint research were 

published in 1954. Work was done in two parts: (1) identifying all the irregular primes < 

2000; and (2) checking that each irregular prime thus found satisfies necessary criteria for 

ensuring that the theorem holds for that case. The criteria introduced by Vandiver in 

1929, and that improved on Kummer’s, were not easily turned into programmable 

algorithms. Thus, Vandiver was required to modify them accordingly, which he did very 

successfully. I have dealt with this topic elsewhere and thus I will not give further details 

here [Corry 2008a]. 

The historical significance of calculations related with Mersenne primes using electronic 

computers are best understood as part of the various developments just described in this 

and the previous sections. As already indicated, the main figure in this part of the story is 

Raphael Robinson, another unique, self-styled mathematician. Robinson’s range of 

mathematical interests spanned fields as diverse as logic, set theory, combinatorics, 

geometry, complex analysis and number theory, in all of which he made significant 

contributions. He described himself as an “old-fashioned” mathematician that often 

                                                 
15 Emma Lehmer to Vandiver: March 7, 1953 (HSV).  

16 Vandiver to Emma Lehmer: April 3, 1953 (HSV).  
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switched research fields and tackled neglected problems of various kinds. He joined the 

mathematical faculty at Berkeley at nearly the same time than Lehmer [Brillhart 1996, 

Henkin 1995]. Previous to his work on Mersenne primes, Robinson had published mainly 

on complex analysis and logic. Curiously, however, early in his career, in 1940, he 

developed a set of stencils that could be used to solving quadratic congruences x2 ≡ a 

(mod m). The stencils were produced in a spirit similar to D N Lehmer’s factor stencils of 

1929. They were implemented in Hollerith punch cards that were used to mechanically 

simulate the so- called “Gauss method of exclusion” [Robinson 1941].17  

By 1952, the date of Robinson’s incursion in the field, the test developed by DH Lehmer 

in 1930 was still the main tool for determining the primeness of any Mp (and it has 

remained so to this day). As already said above, one of the main contributions of Lucas 

had been to suggest a method whereby the primality of a given number is tested by 

checking if it divides a certain other number, rather than by whom it is divided (or not 

divided). Under Lehmer’s additional contribution the test came to be based, specifically, 

on the behavior of a sequence that is defined recursively by: s0 = 4; sn+1 = sn
2 - 2. Lehmer 

showed that Mp is prime if and only if Mp divides sp-1. Thus, with the help of this test 

knowledge about Mp for p ≤ 257 had progressed considerably by 1952. The following 

table summarizes the state of the art at that time [Williams 1998, 200]:  

p ≤ 257 Character of Mp 

2, 3, 5, 7, 13, 17 ,19, 31, 61, 89, 107, 127 Prime 

11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 
79, 83, 97, 113, 151 

Composite and completely 
factored 

                                                 
17 See DH Lehmer’s description in Mathematical Reviews 1942 (MR0002987).  
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163, 173, 179, 181, 223, 233, 239, 251 
Two or more prime factors 
known 

131, 167, 191, 197, 211, 229 Only one prime factor known 

101, 193, 109, 137, 139, 149, 157, 193, 199, 
227, 241, 257 

Composite but no factor known 

 

In January 1952 Robinson wrote from Berkeley to the Lehmers offering a program for 

primality testing and hoping that they “will at least have a chance to try [it] out”. He thus 

wrote:18 

I have amused myself for the past few weeks by constructing a program for testing Mersenne and 

Fermat numbers on the SWAC. The program, and a rather complete explanation, are enclosed. I 

do not even know whether anyone else has made a similar program, but even if that is the case, 

mine should be of some interest. Some features [of it] … might be used in other programs.  

I have checked the program carefully, and feel sure that it is free from error. Whether the SWAC 

will actually run the program or not is another question. I have the feeling that this may be just 

the sort of program which the SWAC should theoretically do, but which it doesn’t like because of 

its highly repetitive character. If so, I suppose we can only wait until the SWAC is in better 

shape.  

And free from error it was! The program, that implemented the Lucas-Lehmer test, is a 

veritable landmark in the history of scientific computing. John Brillhart, who completed 

his PhD in 1967 at Berkeley under Lehmer, described it retrospectively in the following 

words [Brillhart 1996, 16]: 

                                                 
18 Robinson to DH Lehmer , January 9, 1952. This, and following letters are found at the 

Emma & Dick Lehmer’s Archive, Bancroft Library, UC Berkeley (hereafter DEL), and 

are quoted with permission.  
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Actually Raphael had never seen nor programmed a computer, but he astonished everyone by 

writing a SWAC primality testing program up in Berkeley which ran the first time. This was 

typical of the kind of careful and clever work that Raphael did. He had figured out how the 

machine worked from some notes, and after asking some questions, had punched the binary 

program cards and sent the deck of cards down to UCLA to be run. 

The Lehmers, who were busy at the time, put the deck on a shelf, planning to debug the program 

when they had a free moment. Raphael (up in Berkeley) waited and waited but no word came. 

Finally he phoned and found out that they hadn’t even tried his program. His response was to 

send a telegram: “TRY IT!” 19  

From DH Lehmer’s correspondence and several short notes he published at that time, we 

know many details about progress in calculations with SWAC. Robinson’s program was 

first run on January 30, and two new Mersenne primes were found that very day, M521 

and M607. These two numbers yield, respectively, the 13th and 14th perfect numbers [DH 

Lehmer 1952a]. DH Lehmer wrote to Turing in February asking for the current state of 

work at Manchester on the Mersenne primes as well as with the Riemann Zeta function. 

He informed Turing about their own progress: indices up to n = 1733 had been checked 

with only the first two new primes found thus far.20 Turing was highly impressed by the 

ability to calculate up to such high values of Mersenne numbers. He informed that at 

Manchester very little progress had been done on this field, but some had been done on 

                                                 
19 [Williams 1998, 286], who quotes this passages adds that in his article “Brilhart wrote 

‘RUN IT’, but agrees now that he was mistaken. Raphael did tend to be soft-spoken, but 

of cours telegrams did not empoy lowercase letters.”  

20 DH Lehmer to Turing, February 15, 1952 (DEL).  
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the Riemman zeta-function.21 By June, Lehmer informed that the Mersenne program was 

“going along rather slowly. We are little beyond n = 2000 on the first run and over n = 

1300 on the rerun.” There was usually a gap of two weeks between the two runs. At this 

point, however, there were no new primes to report.22 On June 25 M1279 was identified as 

prime with a test that took less than 13.5 minutes [DH Lehmer 1952b].23 M2203 and M2281 

were identified in October 7 and 9, respectively, with computing times of 59 and 66 

minutes [DH Lehmer 1953].24 

For each index n, the output of Robinson’s program yielded the least non-negative 

residue of sn-1 (mod Mn). In hexagesimal notation, this is a long string of zeros if Mn is 

prime. Otherwise the output was an apparently random sequence of digits. For those 

values of n for which no factor of Mn was known the program was run twice and even, in 

case of disagreement, three times. At any rate, a result was accepted as correct only if it 

was obtained twice, and indeed on different days. Eventually, testing again the already 

known values of Mersenne primes became a “check that SWAC in good working 

order.”25 Because of the repeated checkings, the project was not considered to be 

complete until late 1953. Only then Robinson officially reported the results of the project 

[Robinson 1954].  

                                                 
21 Turing to DH Lehmer, February 19, 1952 (DEL). 

22 DH Lehmer to Turing, June 10, 1952 (DEL). 

23 DH Lehmer to Horace Uhler, August 19, 1952 (DEL).  

24 DH Lehmer to Horace Uhler, October 17, 1952 (DEL). 

25 DH Lehmer to Lowell Schoenfeld August 19, 1952 (DEL). 
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The physical limitations of the machine implied that the indexes to be calculated could 

not be over p = 2309. Indeed, as already said, the internal memory of SWAC had a 

capacity of 256 numbers of 36 binary digits (exclusive of sign). Half of this memory was 

used for storing the instructions, while the other half stored 2p binary digits of two 

numbers sk and sk+1 (mod Mn). Thus, 2p ≤ 128·36, and hence p ≤ 2304.26 Robinson 

estimated a running time of 0.25n3+125n2 microseconds in SWAC for his program and 

the actual time came very close to this.27 He was very proud to state that his testing of 

Mersenne numbers for primeness has been taken “about as far as is practicable using 

present day computers.” A no lesser source of pride was the fact that each “minute of 

machine time is equivalent to more than a year's work for a person using a desk 

calculator.” 

Other than the new cases of Mersenne numbers identified as primes, Robinson did not 

publish the “hundreds of remainders obtained” for the other cases. These were deposited, 

as was customary with other tables at the time, at the Institute for Numerical Analysis. 

Robinson also reported on results obtained with SWAC in relation with Fermat numbers, 

by running a modified version of his program. This program showed that 21024 + 1 is 

composite. However, before this result of Robinson was published, Selfridge went further 

and actually found factors for F10 and F16, as already stated above. 

                                                 
26 DH Lehmer to Horace Uhler June 16, 1952 (DEL). 

27 In a letter to Horace Uhler (June 4, 1952 - DEL), however, DH Lehmer wrote that the 

estimated run time for a given p was (p/100)3 seconds 
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Mersenne numbers remained now unchecked from 22309-1 on. Robinson stated that the 

next case of real interest would be 28191-1, because it constitutes a test case for yet another 

open conjecture, namely, that 2n-1 is always prime when n is itself a Mersenne prime. 

This conjecture was known to be valid for the first four cases (3 = 22-1, 7 = 23-1, 31 = 25-

1, and 127 = 27-1), and the next number in line was n = 8191 = 213-1. However, a relevant 

computation had been recently performed in by Wheeler on ILLIAC, at the University of 

Illinois. After one hundred hours of machine time the remainder obtained was not zero, 

indicating that the number is composite. This seemed to disprove the conjecture, but 

Robinson went on the safe side by stating that “according to Dr. Wheeler, considerable 

confidence may be placed in this result, since the computation was carefully checked.” 

[Robinson 1954, 846].  

Robinson himself continued to be involved in some additional, related computations. In 

September-November 1956, with Selfridge operating SWAC, fourteen new factors of 

Fermat numbers were discovered for n = 39, 55, 63, 117, 125, 144, 150, 207, 226, 228, 

268, 284, 316, 452 [Robinson 1957a]. In February-April 1957 he run new factorization 

routines, now on Berkeley’s IBM 701, that could find factors smaller than 235. New 

factors were discovered for 295 − 1, 2109 − 1, and 2157 – 1, on the one hand, and for 271 + 

1,  2109 + 1,  2112 + 1,  2113 + 1, and 2134 + 1, on the other hand. Robinson also confirmed 

Wheeler’s disproof of the conjecture mentioned above, by finding now factors of Mm, 

when m = 217 -1 and m = 219 – 1 [Robinson 1957b].   
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8. Concluding Remarks  

Mersenne numbers continued to attract the interest of computational number theorists as 

well as of engineers looking for endurance tests for new machines and new programming 

techniques. The first important case immediately after Robinson was that of Hans Riesel, 

who in late 1957 run programs on the Swedish electronic digital computer BESK [Riesel 

1958]. It discovered the 18th Mersenne Prime, M3217, after 5hours and 30minutes of 

calculation, with a small error that was later corrected by Selfridge.28  The latest 

important stage is the Great Internet Mersenne Prime Search, a unique web-based 

initiative launched in January 1996. It uses idle time of thousands personal computers of 

volunteers who have downloaded and installed a module that turns them into active 

partners in this huge, Internet-based, distributed project. The first prime found as part of 

GIMPS, M1398269, was discovered in November 1996 by Joel Armengaud. The latest one, 

thus far, was discovered on September 4, 2006, by Curtis Cooper and Steven Boone. It is 

the 9,808,358- digit number M32582657.  

Improved machines and computation techniques were increasingly developed after 1955, 

and electronic computers gradually became ubiquitous in science. Pure mathematical 

fields in general and in particular number theory were slower and more hesitant in joining 

this trend. Computational number theory continued to develop along the twentieth 

century, but number theory as a whole remained, essentially, a purely theoretical 

discipline where the leading images and ideals were still similar to those promoted by 

Hilbert and likeminded mathematicians at the turn of the twentieth century, even if much 

more powerful and sophisticate techniques were continually adopted. The 

                                                 
28 In MTAC 13, 1959, 142. 
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mathematicians mentioned in this article – Vandiver, the Lehmers, Robinson and some 

others – played a seminal role in introducing a direction of research that attracted little 

attention among the leading practitioners of the discipline and that has ever since 

produced many important results and opened new avenues of research. Were it not for the 

special circumstances that surrounded their careers, this direction might have taken much 

longer to start and to being pursued by many others.  
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